The Global Ionosphere Thermosphere Model and Results from the April 2002 Storm

Aaron Ridley
The University of Michigan
GITM

Newly created global ionosphere thermosphere model (GITM) to model the neutral and ion composition, temperature, and dynamics from 95-500+ km altitude.

GITM is a fully parallel code which has been run on 80 processors.
GITM Physics

GITM solves for:

- 6 Neutral Species
- 5 Ion Species
- Neutral winds
- Neutral Temperatures
- Ion and Electron Convection
- Ion and Electron Temperatures
- Solves in Altitude coordinates
A Flexible Model

One of the most important aspects of the new model is flexibility:

• Can stretch grid in latitude and altitude. Parallel decomposition in lat/lon blocks. Have run on 80 PEs.

• Can use Apex or dipole.

• Can use almost any high latitude electric potential / auroral precipitation model you want (AMIE, Weimer, Fuller-Rowell and Evans, etc).

• Can restart from previous run or start from scratch using MSIS and IRI.

• All terms are clearly defined - you can easily turn them off and on to do numerical experimentation.
Grid Variability

- Can run GITM as a 1D code for very high resolution altitude studies at a single location.
- Can run GITM as a 2D (Latitude vs Altitude or Longitude vs Altitude) code.
- Can run in a limited 3D region.
- Can run in parallel in 3D covering all longitudes and either all latitudes (messaged passing over the pole) or a limited latitude band.
- Boundary conditions play important role in 3D limited region runs.
Physics and Chemistry

- GITM uses subcycling to resolve chemistry in both the neutrals and the ions. This allows us to model non-steady-state chemistry - in fact our local chemistry time step can be reduced to 0.001 seconds.
- All advection is explicit - this means that the global time step is limited by the smallest cells and largest velocities. Typical time step in quiet time is around 1.5 seconds, while during a storm it can be reduced to 0.2 seconds.
- April 2002 storm ran in real time on 80 processors (2 degrees latitude by 5 degrees longitude resolution).
Space Weather Reanalysis

- DoD funded project to model 1 solar cycle worth of space weather.
- Based at NOAA’s National Geophysical Data Center.
- We have modeled all of 1997-2001 using both AMIE and GITM.
- Data will be available over the web soon.
- This really tests the robustness of the model!!
- We have used 140,000 CPU hours to run 1997-1998.
Cause and Effect

We used GITM to simulate the thermosphere and ionosphere during the May 1998 storm using AMIE and the Weimer [1996] electric field models. These different models produce very different Joule heating rates, which change the thermospheric temperature structure.

Weimer [1996]
![Thermospheric temperature structure](image1.png)

AMIE
![Thermospheric temperature structure](image2.png)
Grid for April 2002

- 2 degree Latitude
- 5 degrees Longitude
- 50 points in Altitude (95-750 km)
GITM Results

- [e-] at 500 km.
- Get clear fountain effect.
GITM Results

- Temperature at 350 km
- Joule Heating in the auroral zone observed
GITM Results

- $\log([\text{NO}])$ at 115 km altitude
- Strongly driven by aurora with small dayside component
Data Products

- Can track satellites and output at the same cadence as the satellite observations.
- With GUVI, we track 23 points along the swath, and output all altitudes for each 15 second measurement.
- So, from model results we can examine temperature profiles, [e-] and neutral densities, and winds - along GUVI swath at all altitudes.
- Use for validation or for putting TIMED measurements into a global context.
GUVI - GITM
Comparison for April 17, 2002
• Auroral structure is reproduced very well.
Limb Data

- Because we output all altitudes at each satellite location, we can reproduce limb data.
O/N2 Global Ratios

- Start at a constant pressure level and integrate up.
O/N2

• Run with no activity for 24 hours.
• Run with $B_z = -20$ nT for 12 hours.
• But - Little to no Aurora.
Summary

• GITM is a new thermosphere - ionosphere model, which solves for many major and minor ion and neutral species.
• Uses a flexible grid structure and altitude coordinates.
• Can run using AMIE or statistical models of potential and electron precipitation.
• Solves most quantities explicitly and does not assume chemical equilibrium to solve for any species.
• Small time steps - 1.5 seconds typical.
• Can fly satellites through simulation to make direct comparisons at same temporal resolution as satellite measurements.
• Can use satellite tracking capability for validation and putting measurements into the global context. This is quite important when you only have 1 local time sector.
• http://csem.engin.umich.edu/~ridley/GITM