A COMPARISON OF TIDI SCIENCE OBSERVATIONS BETWEEN 2002 & 2003

Rick Niciejewski
The University of Michigan
and the TIDI Science Team
U. Michigan, NCAR, & NWRA
TIDI Data Products

- **Level 0**
 - Processed telemetry data
 Spectra are in ADU

- **Level 1**
 - Line of sight fits to all Level 0 spectra
 Best fit in the “least-squares sense”
 Geophysical output includes line of sight winds
 SCIENTIFICALLY USEFUL WIND PRODUCT

- **Level 2**
 - Inversion of Level 0 altitude scans into geophysical products
 - Altitude profiles of line of sight winds onto a “mean” grid

- **Level 3**
 - Conversion of Level 2 output onto a track angle/altitude grid
Data study

- **Time period**
 - Full mission

- **Tangent altitude**
 - Dayside 70 to 120 km
 - Night 80 to 110 km

- **Binning strategy**
 - 7.5 degree track angle bins (0 = eq; 90 = N; 180 = eq; 270 = S)
 - 7.5 degree latitude bins
 - 1 hour local time bins
 - 2.5 km altitude bins

- **Engineering constraint**
 - Mission data divided into individual yaw periods
Yaw periods

- TIMED undergoes yaw maneuvers
 - TIDI telescopes undergo 180 degree change in pointing azimuth
 - “Zero-wind” offset which includes Earth rotation is dependent upon flight direction and is different for each telescope (8 unknowns)

- Three complete yaw cycles are compared in this study
 - mid-March to mid-May, flying forward
 - mid-May to mid-July, flying backward
 - mid-July to mid-September, flying forward

- Yaw periods are roughly
 - March equinox
 - June solstice
 - Mix?
TIDI LOS airglow brightness
TIDI line of sight winds
TIDI LOS winds: annual series
Meridional winds - annual
Zonal winds - annual
Alt/lst comparison: brightness
Alt/LST: meridional winds
HRDI observations

Figure 4.11. Observed monthly mean zonal and meridional wind contours on altitude-local time grids at a fixed latitude of 25°S for the spring equinox of 1992. The downward phase progression suggests a phase speed of about 24 hours and a vertical wavelength of 25 km.

Alt/lat: zonal winds
TIME-GCM zonal wind runs

Equinox

December solstice
Lat/LST: zonal winds

TIDI - Spring SWG 2004 03.16.04 15 Niciejewski
Equinox winds

HRDI

Model:
Forbes and Gillette, 1982
Summary

• Time trends indicate
 – Strong tidal signatures are present in the wind data sets
 – Expected dynamics features are clear in the wind data sets
 – Dynamics features repeat from 2002 to 2003
 – Airglow brightness increase in 2003 coincident with removal of “frosting” from optical path

• FUTURE WORK
 – Complete 2002 data ingestion
 – Optimize line-of-sight “zero” wind offset
 Recalculate meridional and zonal horizontal wind components
 Determine tidal amplitudes/phases for entire mission
 Determine mean prevailing winds
 – Compare with ground-based MLT wind measurements