Gravity Wave Penetration into the Thermosphere and Responses to Solar Variability

Dave Fritts and Sharon Vadas
Colorado Research Associates/NWRA
Boulder, Colorado
Motivation

GW forcing of the MLT occurs primarily by GWs with large scales and high frequencies.

These GWs can arise:
- from discrete sources in the lower atmos.
- from strong local forcing in the MLT
- from refraction in strong shears
Approach

• Formulate general viscous dispersion relation to understand implications for penetration

• Use Fourier and ray-tracing methods to assess GW spectra and thermospheric penetration

• Initial focus on method development, applications to real temperatures, winds, and MLT effects thereafter
Fourier representation of GWs arising from mesoscale convection

responses at 90 km

w', T'

responses above 90 km

CoRA, NWRA, Inc.
Fourier description of response to local dissipation

- contribution to “mean” body forcing
- radiation of high-freq. GWs to higher and lower altitudes
MCC GW momentum flux spectrum

smaller λ_z portion interacts with MLT winds near the mesopause

large λ_z portion penetrates quickly to high altitudes near the mesopause

ω/N, λ_z (km)
Time-height plot of thermospheric body force due to GWs excited by MCCs
- forcing extends to high altitudes, will exhibit **strong** solar-cycle dependence

![Diagram showing time-height plot with arrows indicating GWs and a color contour map representing force distribution.]

TIMED SWG 3/04
Penetration of GWs excited by MCCs in a viscous thermosphere

Altitude penetration of GWs varies as
(from viscous dispersion relation)

\[Z_{\text{diss}} - Z_0 \sim H \ln \left(\frac{\omega_r H}{4 m_0 \nu_0} \right) \sim T \ln T \]

=>

penetr. to \(\sim250 \text{ km}, \) solar min (\(T \sim 500 \text{ K} \))

penetr. to \(\sim300-400 \text{ km}, \) solar max (\(T \sim 1000 \text{ K} \))
Penetration of GWs excited by MCCs in a viscous thermosphere

\[T(z) \]

\[\ln(\rho/\rho_0) \]

\[N^2(z) \]

\[H(z) \]
Penetration of GWs excited by MCCs in a viscous thermosphere

\(T_{th} = 250 \, \text{K} \) (ref. only)

\(T_{th} = 500 \, \text{K}

\(T_{th} = 1000 \, \text{K}

TIMED SWG 3/04
TIMED publications:

14 papers published, in press, or submitted to date