Storm-Substorm Relationships During the 4 October, 2000 Storm. IMAGE Global ENA Imaging Results

Pontus C:son Brandt, Donald G. Mitchell, Robert Demajistre, Edmond C. Roelof, Shin Ohtani, Jorg-Micha Jahn, Craig Pollock, Geoff Reeves

Abstract. Global ion distributions in the 1-200 keV energy range from the main phase of the geomagnetic storm on 4 October 2000 are presented and analyzed. Proton distributions have been obtained by inverting energetic neutral atom (ENA) images from the high energy neutral atom (HENA) instrument on board the IMAGE satellite using a constrained linear inversion technique. The storm is characterized by a 24 hour long main phase where the IMF \(B_z \) steadily decreases followed by a 2 day recovery. Several substorms occurred during the main phase as can be seen from in-situ measurements from geosynchronous satellites (LANL, GOES). Substorm injections during the early main phase, when the dawn to dusk electric field was weak, occurred on closed trajectories. A strong asymmetric ring current developed as the IMF \(B_z \) decreased gradually to about -10 nT. A substorm occurred at about 17:30 UT which injected plasma onto open trajectories with no clear change in the morphology of the partial ring current. As the IMF \(B_z \) increased towards zero, substorms were observed to inject ions onto closed trajectories. The peak of the ring current moved from \(L=5 \) to \(L=3 \) during the entire main phase. A preliminary inspection of \(\sim 80-160 \) keV oxygen ENA fluxes reveals a one order of magnitude increase during the entire main phase, implying that \(O^+ \) contributed significantly to this storm. In order to quantify the variations in the ring current energy content, the equivalent magnetic disturbance \(D_{ENA} \) is calculated for the \(L \leq 6 \) proton distributions using the Dessler-Parker-Sckopke relation. Our calculated \(D_{ENA} \) suggests that substorm proton injections did not increase the ring current energy content over the main phase. Together with the fact that the proton ring current was mostly partial, this shows that the dominant ring current energy increase must have been due to increased convection. However, the long-term increase in oxygen ENA fluxes suggest that substorms extracted ionospheric \(O^+ \) that was fed into the magnetospheric circulation. In that respect, the \(O^+ \) increased the energy content over the main phase. We also discuss implications of strong electric fields in the inner region \(L<4 \).

1. INTRODUCTION

Historically it was believed that a geomagnetic storm was the effect of many substorms Akasofu [1968]. It was later recognized by Gonzalez and Tsurutani [1987] that the requirement for a geomagnetic storm to occur was an IMF \(B_z \leq -10 \) nT for at least 3 h. More recent studies have shown that convection is the dominant driver in geomagnetic storms and that the main phase ring current is mostly partial where ions drift on open trajectories out through the dayside magnetopause [Liemohn et al., 2001]. However, there still remains a question of how much the substorm injections during a storm main phase contribute to the overall storm time
energy content of the ring current.

The problem we investigate in this paper can be summarized as follows. The storm intensity has been characterized by the D_a, and more recently, by the SYM-H and ASY-H indices. These are indices directly calculated from the magnetic disturbance measured at the equatorial surface. The magnetic disturbance can be related to the total energy content of the ions that flow around the Earth, via the Dessler-Parker-Sckopke (DPS) relation [Dessler and Parker, 1959; Sckopke, 1966]. Now the problem is how much of the growth of the energy content during a geomagnetic storm can be attributed to substorms and how much can be attributed to an increase in the overall convection strength. Once plasma is injected during a substorm onto open trajectories it will not contribute further to the overall growth of the energy. This is because the injected particles will be lost through the magnetopause. So, the only way accumulated substorm injections can contribute to the overall growth is if the injections are onto closed drift trajectories.

On the other hand, the energy content of plasma being transported by the $\mathbf{E} \times \mathbf{B}$ drift set up by the IMF-generated cross tail electric field, can increase if the cross tail electric field increases. The reason for this is that the stronger electric field will decrease the Alfvén boundary (boundary between open and closed trajectories for particles with given magnetic moment) so that the plasma can access lower altitudes. This will in turn lead to adiabatic energization since the plasma is now transported into a region with higher magnetic field strength.

Plasma cannot be trapped by a slowly varying convection. If the IMF B_z changes from southward to northward on time scales less than the drift period of an ion of given energy, the electric field pattern changes such that ions that were previously on open trajectories find themselves on trapped trajectories. Then, during periods where the IMF B_z is decreasing reasonably steadily, the trapped population could only come from substorm injections. We will examine the global ion distribution during such periods and investigate how much of the growth of the total energy is due to substorms injections or increased convection.

In this paper we will present ENA images from the main phase of the storm. The ENA images have been inverted to obtain an equatorial ion distribution, using a constrained linear inversion technique. In order to quantify how much the substorm injections contribute to the overall storm growth we compute the equivalent magnetic disturbance D_{ENA} for the global proton distributions during the main phase. The proton distribution at a given energy will tell us if the trajectories are open or closed, and its contribution to D_{ENA} relative to other energies will tell us how much it contributes to the over all growth of the total energy. In addition to this we will show how the oxygen ENA flux increased over the main phase and discuss its implications. We also discuss briefly the spectral features of the main phase indicating that there was a deep potential minimum on $L \leq 3$ implying a significant electric fields. We compare our results to a model derived electric field by Ridley and Liemohn [2001]. The purpose of this study is to investigate what restrictions can be put on different energy sources to the ring current energization by analyzing the global ion distributions we have obtained.

2. INVERSION TECHNIQUE

We use a constrained linear inversion technique that closely follows the method described by Twomey [1977] and also similar to Perez et al. [2001]. Previous studies [Henderson et al., 1997; C:son Brandt et al., 2001a] have used a forward modeling technique based on a parametrized model of the ion distribution developed by Roelof and Skinner [2000]. The inversion technique was described in C:son Brandt et al. [2001b] and we only outline its main components here. The idea is to expand the line of sight (LOS) integral that describes the production of ENAs into sums of linear quadrature and then equating them with the observed image and in that way determine the quadrature coefficients. In the present formulation the pitch angle distribution (PAD) is described by one isotropic component and one linear component representing the field aligned and perpendicular shape of the PAD. In this paper we focus only on the isotropic component. The ion distributions were clamped down to zero at $L=2$ and $L=16$. We use here the day-night asymmetric exosphere based on the DE-1 measurements reported by Rairden et al. [1986] and also used by C:son Brandt et al., [2001b]. The absolute fluxes obtained by our algorithm appear to be somewhat overestimated. The calculated D_{ENA} calculated below should therefore not be taken as absolute, but rather as a relative indicator on the total energy content of the ring current. Fluxes should be correct in a relative sense.

3. CALCULATING MAGNETIC DISTURBANCE

We use the retrieved ion distributions to calculate the magnetic disturbance at the equator on the surface of the Earth. We do this by using the Dessler-Parker-Sckopke relation [Dessler and Parker, 1959; Sckopke, 1966], which states that the horizontal magnetic perturbation ΔB at the equator can be written

$$\Delta B = \frac{2}{3} \frac{E_{t,d}}{E_{m}} B_0,$$

(1)
where B_0 is the nominal dipole magnetic field intensity at the surface and E_m is the magnetic energy contained in the dipole magnetic field and can be written

$$E_m = \frac{4\pi}{3\mu_0} B_0^2 R_E^2. \quad (2)$$

The total energy of the particles E_{tot} is expressed as the volume integral over the energy density. We can obtain the energy density ρ by

$$\rho = 4\pi \int p^2 f(p) E dp, \quad (3)$$

where E is the energy of the ions and m is the ion mass, where we have assumed protons. $p = mv$ is the momentum of the ions. The distribution function f (in momentum space) can be related to the ion flux (differential in energy) through

$$j(E) = p^2 f(p). \quad (4)$$

Transforming the integral 3 to sums for an isotropic pitch angle distribution in ϕ and L space we can write Equation 1 to a first approximation

$$D_{\text{ENA}} \approx \frac{128}{35} \frac{\mu_0 m^2}{B_0} \sum_{ijk} J_{ijk} \frac{E_i^2 L_j^2}{(2mE_i)^2} \Delta E_i \Delta L_j \Delta \phi_k, \quad (5)$$

where μ_0 is the magnetic permeability in vacuum. J_{ijk} is the proton flux at energy E_i in a finite interval ΔE_i, L-shell L_j and local time angle ϕ_k. The bin size in L and ϕ is denoted ΔL and $\Delta \phi$. The approximation comes from the fact that we have neglected the tedious L-dependence in our evaluation of the flux tube volumes. The error is about 20% at $L \leq 3$, but rapidly decreases as L increases. We will use this formula to calculate the magnetic disturbance from the proton distributions. Since the DPS relation assumes a pure dipole field we will only calculate it for ion distributions on $L \leq 6$.

4. GLOBAL STORM OBSERVATIONS

The 4 October storm main phase was characterized by a long and gradual decrease of the IMF B_z ended by some rapid fluctuations in the IMF and then a gradual recovery. About a half a dozen substorms occurred during 4 October that showed up clearly in the Los Alamos National Laboratory (LANL) geosynchronous proton data as well as in the geomagnetic B_z component observed by the GOES satellite. We will only show ENA data from two of those substorms here. C:son Brandt et al. [2001b] have examined ENA and in-situ data from some of these substorm in more detail.

All ENA images (Plates 2 and 4) in this paper are presented in an azimuthal, equidistant projection of the sky hemisphere. The dipole field lines of 4, 8 and 12 are shown for reference and the MLTs are indicated by red numbers. In some images a narrow band of emissions runs horizontally across the upper portions. This is the solar contamination from residual sunlight hitting the detector plates. The LOSs to this contamination usually intersects L-shells much higher than where it can effect the magnetospheric ion distribution. All HENA images in this paper are obtained with a 10 min integration time and all MENA images with 30 min integration.

Plate 1 shows the SYMH (black line) and (negative) ASYH (green line) for the main phase we are studying in this paper. The red line is the electric field E_y set up by the solar wind ($v_y B_z$). Note that the E_y increases up until approximately 18:00 UT and then starts slowly decreasing. This indicates that the Earthward $E \times B$ drift feeds more and more plasma into the nightside magnetosphere and that the Alfvén layer (for given magnetic moment it is the boundary between open and closed drift trajectories) continuously shrinks up until 18:00 UT.

Also plotted in Plate 1 is the equivalent magnetic disturbance D_{ENA} from the ion distributions inverted from the ENA images as described above. Squares represent the individual energies as indicated and stars represent the total sum. The values of the total D_{ENA} have been scaled to fit on the same scale as SYMH and more specifically to coincide with the SYMH at 04:21 UT. We stress that our estimated D_{ENA}
should not be taken as absolute but as a measure of the energy content of ions inside L=6. We discuss the implications in the Discussion section.

During the early main phase (when the E_y was still weak) the substorms appeared to inject plasma onto closed trajectories at 06:10 (Plate 3) and 09:24 UT (not shown). Later in the main phase as E_y had increased to about 5 mV/m the ENA images indicated substorm injections onto open drift trajectories such as for the 12:10, 14:00 UT substorms (POLAR/IPS measurements, not shown) and the 17:30 UT substorm (Plate 5). As the E_y decreased slowly, the injections at 20:00 and 21:30 UT (not shown) appeared to build up the symmetric component of the ring current gradually (Plate 1).

4.1. Early Main Phase

Plate 2 shows the observations at 06:40 and 08:30 UT on 4 October in the 27-39 and 60-81 keV energy range. Plate 3 shows the corresponding ion distributions obtained by the inversion method described above. We see that the injection elevated the nightside ion fluxes at L=4, but fluxes remained low on the dayside. Later in Plates 3c and 3d, the nightside fluxes has decreased while the ring current appears to have become slightly more enhanced and symmetric on L=4. According to the calculated total D_{ENA} the ring current energy content during this time did not increase as can be seen in Plate 1. This directly implies that cross tail current may have contributed significantly to the SYMH and ASYH. However, we will discuss below in the Discussion section (Figure 1) the O^+ abundance for this period.

There were two substorms at 06:10 and 09:22 UT, which both were preceded by elevated plasma sheet fluxes beyond 8 R_E. Their behavior have been reported by C. Son Brandt et al. [2001b]. In Plate 3a plasma sheet fluxes are low, but note that in Plate 3c plasma sheet fluxes have increased which is consistent with the overall convection continuously feeding the plasma sheet with fresh plasma.

4.2. Late Main Phase

Plate 4 shows the observed ENA images in the 27-39 and 60-81 keV range for 17:21 UT and 19:30 UT. Plate 5 shows the equatorial ion distributions inverted from the ENA images in Plate 4. According to auroral FUV images obtained by the FUV camera on board IMAGE, a substorm onset occurred at approximately 17:20 UT. At 17:30 UT an ion injection was observed around midnight at geosynchronous altitudes. We can see that there is not much change in ion flux from 17:21 UT to 19:30 UT in either energy range.

If one considers that the curvature-gradient drift period of 70 keV protons is approximately 3 h, it is reasonable to expect that the dayside ions present at 19:30 UT are the ions from the injection at 17:30 UT. For all energies in Plate 5 there are ion fluxes extending past dusk to noon and weak signatures of ion fluxes extending out to L=8 around noon. This implies that the ions at these energies curvature-gradient drifted around to noon where they were lost through the dayside magnetopause and picked up by the magnetosheath flow. The magnetopause during this time was around 11 R_E on the dusk flank and was estimated to be inside L=8 at the subsolar point using the fits by Roelof and Sibeck [1993]. It is clear that there are almost no ion fluxes in the pre noon sector for 60-81 keV which implies that the drift trajectories were open at this energy. We also note that the MLT region spanned by the partial ring current leaves only a narrow sector in MLT with significantly lower ion fluxes. Thus a finite number of in-situ measurements at geosynchronous orbit could run a high risk of missing this minimum, making it look like the ring current was still closed during this time.

19:30 UT is also the time of the deepest minimum of SYMH in Plate 1, but this does not seem to be reflected in the proton distributions and D_{ENA}. Again the cause for this could be the tail current contribution and O^+ as will be discussed in the Discussion section.

Plate 6 shows the ENA images from the MENA imager in the 1.0-5.3 keV energy range. We immediately note the similarity between these and the ones observed by HENA at 27-39 keV (Plate 4a). We have unfortunately not inverted the MENA images, so the comparison has to be qualitative. The observations at MENA energies are essential since the ions are dominated by the electric drifts at these lower energies. From Plate 6 we see that there is perhaps a weak maximum in the post-midnight sector, and that the ENA fluxes decrease rapidly once beyond dusk. In Plates 4a and 4b we see that the ENA fluxes continue beyond dusk. This is reasonable since at higher energies the curvature-gradient drift should be more pronounced. However, the change of the morphology over the entire energy range is not drastic, and we will discuss below how this can imply significant electric field magnitudes deep in the inner magnetosphere.

5. Discussion

In order to answer the original question about how much substorms contribute to the growth of the geomagnetic storm, consider Plates 3 and 5. The proton distributions are clearly asymmetric in MLT. This means that the substorms did not induce electric fields sufficiently strong to inject protons onto stably trapped orbits. Also, ENA images (not presented here) from POLAR/IPS at 11:30-14:30 UT show the development of another two substorms, supporting the above conclusion. The first substorm occurred at approximately 12:10
Plate 2. The first substorm injection during the early main phase occurred at 06:10 UT. This plate shows the hydrogen ENA images 30 min and 140 min after the injection. The ENA image at (a) 06:40 UT at 27-39 keV, (b) 06:40 UT at 60-81 keV (c) 08:30 UT at 27-39 keV, and (d) 08:30 UT at 60-81 keV. Note that the ENA flux decreases although the ASYMh increases.
Plate 3. The proton fluxes obtained from the inversions of Plate 2 plotted in the equatorial plane. Only the isotropic pitch angle component is shown. (a) 06:40 UT and 27-39 keV. The injection is clearly visible on the nightside. A minimum appears in the pre noon sector. (b) 06:40 UT and 60-81 keV. Intensities lower but pattern almost unchanged. (c) 08:30 UT and 27-39 keV. High intensities on the nightside are still visible. Ion distribution appears more isotropic. (d) 08:30 UT and 60-81 keV. Weak maximum appears on nightside and around noon.
Plate 4. Observed hydrogen ENA images from (a) 17:21 UT and 27-39 keV, (b) 17:21 UT and 60-81 keV, (c) 19:30 UT and 27-39 keV, and (d) 19:30 UT and 60-81 keV.
Plate 5. Equatorial ion distributions inverted from the ENA images in Plate 4.
Plate 6. MENA images obtained in the (a) 1.0–2.3 keV range and (b) 2.3–5.3 keV range. The morphology is quite similar to that obtained by HENA in the higher energy range. See Plates 4a and 4b, but note the different colorbar.
Figure 2. The integrated oxygen ENA flux in the \(~80-160\) keV range over the second half of the main phase.

Figure 1. The integrated oxygen ENA flux in the \(~80-160\) keV range over the first half of the main phase.
At first glance the substorm induced electric field should decrease the size of the Alfven boundary, and that same field would transport particles to its boundary. As the induced electric field decreased, the Alfven boundary then would be expected to increase rapidly and leave the particles inside it, thus placing them on closed drift paths. This simple scenario is valid only if the shielding of the electric field was constant in time. In fact under shielding is expected to occur during substorms. If the shielding decreases during the substorm and the lower values of the shielding are maintained (even after the injection is complete), the Alfven layer will stay at the smaller size, allowing ions to still drift on open trajectories.

Another interesting scenario can be realized if one considers the fact that there exist significant electric fields up to 6 mV/m between L=2 and L=4 [Wygant et al., 1998]. The electric drift velocity in such high electric fields at L=4 would be comparable to the gradient-curvature drift of \(\leq 100 \) keV ions. This means that \(\leq 100 \) keV ions injected onto L<4 would experience electric as well as magnetic drifts and may not become trapped. It is therefore relevant to briefly discuss the implications of the electric field pattern that can be inferred from our observations. Consider the pattern of the ion distribution during the later main phase in Plate 5 and Plate 6. The intense ion fluxes around midnight and L=3 are persistent features for all energies 1-200 keV. According to the POLAR/IPS observation, it appears this feature had been reasonably stable over the 14:00-22:00 UT period.

In the 1.0-5.3 keV range the motion of the ions is dominated by electric drifts. Therefore important implications can be made by studying the ENA images in this energy range (Plate 6). In the superposition of a pure dawn to dusk electric field plus a corotation electric field, the electric drifts would carry the low energy ions straight through on the dusk side. Inspecting Plate 6, it appears that the electric field is configured such that ions will be deflected both at dawn and dusk.

From inspection of the higher energies in Plates 5a and 5b, it is evident that ions have succeeded in drifting to the dayside, but they have decreased in flux considerably. This implies that the high energy ions either (1) are being deviated from their curvature-gradient drift trajectories and are lost through the magnetopause in the post-midnight sector, (2) decrease their energy so that their differential flux decreases at a given energy, or a combination of these two.

In conclusion we can say that there must have been a strong enough field to first bring the ions in to L=3 and that the electric field there changed dramatically to have no, or a very small, positive y-component that would otherwise allow low energy ions to drift across the dawn to dusk meridian, or perhaps the electric field is twisted as a function of radial distance.

We would like to draw attention to a study by Ridley and Liemohn [2001] where they estimated the inner magnetospheric electric field that is set up by the asymmetric ring current. Using the kinetic ring current model by Liemohn et al. [2001] they calculated the electric field pattern in the ionosphere due to the region 2 currents of the asymmetric ring current. The ionospheric potential was then mapped back out to the equatorial plane assuming the magnetic field lines to be infinitely conducting. They found strong electric fields inside L=3 with strong eastward and outward radial components in the post-midnight sector and equally strong westward and outward radial components in the pre-midnight sector (see their Plate 2). Superposed on this was also the over all dusk field and corotational field. This would stretch their patterns slightly more towards dusk. Such strong electric field on low L-shells have been reported by Wygant et al. [1998].

Low energy ions drifting in such an electric field would therefore drift eastward and then inward until they come closer to the Earth near dawn where the outward pointing electric field would transport them westward past local midnight. As the low energy ions reach dusk the eastward electric field component would cause the ions to drift outward and be lost through the duskside/afternoon magnetopause. This general pattern is consistent with our observations.

At high energies ions will start to curvature-gradient drift strongly once they are convected into L=3. As they drift around dusk our observations show that they decrease their intensity drastically. However, there are still weak ion fluxes close to noon, as can be seen in Plates 5a and 5b. Since these energies are dominated by curvature-gradient drift it is most likely that the ion flux is decreased due to an energy decrease as the ions move “uphill” from the deep potential minimum around midnight.

Although the electric field pattern obtained by Ridley and Liemohn [2001] qualitatively agrees with our observations, it does not answer how the ions were transported inward to L=3 in the first place. The dawn to dusk electric field during 4 October was \(\leq 5 \) mV/m which is not extreme by any means and may have been sufficient to transport the ions all the way in to L\(\leq 3 \) where the electric field driven by the asymmetric ring current would take over.

6. Summary and conclusions

We have presented the global equatorial proton distribution in the 16-198 keV energy range for the main phase of the 4 October 2000. The proton distributions were obtained by applying a constrained linear inversion technique [Twomey,
onto closed trajectories. When the IMF B_o decreased steadily from early on the 4 October and slowly started to increase again around 19:00 UT. During the entire 4 October about a half a dozen substorms occurred with regular intervals of which two were described in this paper. In the early main phase, when the dawn to dusk electric field was still weak, the substorm appeared to inject ions onto closed trajectories. When E_y increased in strength, substorms injected particles onto open trajectories. As E_y started to slowly decrease at around 19:00 UT, substorm injections appeared to become trapped.

Up to the time of minimum SYMH we found that no significant symmetric component of the proton ring current had developed, which implies that substorms did not build up a durably trapped proton population and therefore did not contribute directly to the long term energy increase of the main phase ring current. Also, from the time of $E_y=0$ to the time of maximum E_y the peak ring current moved in from L=5 to L=3. This is consistent with the increase in E_y which decreases the size of the Alfvén boundary. In this respect the increase in solar wind driven convection is the long term contributor to increased energy content of the (partial) ring current.

In order to estimate the contribution to the energy content of the ring current from the obtained proton distributions we calculated the equivalent magnetic disturbance (D_{ENA}) at the Earth’s surface at the equator using the DPS relation [Dessler and Parker, 1959; Scapke, 1966] for the L≤6 proton distributions. The D_{ENA} was calculated for the 16-198 keV energy range in seven energy bins as indicated in Plate 1. We found that our proton distributions did not fully account for the SYMH depression. We attributed that to an increase in cross tail current and a (longer term) increase of the O$^+$ content.

A preliminary inspection of the ~80-160 keV oxygen ENA fluxes revealed a one order of magnitude gradual increase over the entire main phase, which we expect would have a significant contribution to the ring current energy build up. Superimposed on the gradual increase, oxygen ENA fluxes displayed ~1 h increases and decreases starting at every substorm onset. This is consistent with the idea that ionspheric O$^+$ is accelerated to high energies during substorms out into the plasma sheet where it enters the magnetospheric circulation. In this respect, substorms contributed to the long term ring current energization.

The fact that the substorm around 17:30 UT injected protons onto open trajectories (with very little change to the asymmetric ring current pattern), raises the question of whether strong electric fields were present at L<4. We discussed studies by Wygant et al. [1998] and Ridley and Liemohn [2001] and found that our observations were consistent with their conclusions and observations of 5-10 mV/m electric fields in the inner region L<4.

Acknowledgments. Thanks to M. W. Liemohn, University of Michigan and A. T. Y. Lui at the Johns Hopkins University Applied Physics Laboratory, Maryland for stimulating discussions.

References

P. Cason Brandt, D. G. Mitchell, E. C. Roelof, R. Demajistre, The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099

This preprint was prepared with AGU’s LATEX macros v4, with the extension package ‘AGU++’ by P. W. Daly, version 1.5f from 1998/07/16.