Auroral boundary correlations between UVI and DMSP

J. F. Carbary, T. Sotirelis, P. T. Newell, and C.-I. Meng
Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA

Received 12 March 2002; revised 30 September 2002; accepted 4 October 2002; published 15 January 2003.

[1] Equatorward and poleward auroral boundaries from latitude profiles of Polar Ultraviolet Imager (UVI) auroral images were correlated with over 23,000 boundaries derived from 2 years of Defense Meteorological Satellite Program (DMSP) electron precipitation data. Latitude differences between DMSP and UVI boundaries were averaged into 1-hour and 3-hour sectors of magnetic local time (MLT). The statistical distributions of these differences generally peak near zero but have Gaussian-like shapes with widths of about 3°–4° in magnetic latitude. The mean values of these offsets exhibit systematic trends in MLT, with the largest disagreement near 05 MLT for the poleward boundaries and near noon for the equatorward boundaries. The mean offsets were fit to second-order harmonic expansions, which approximately “calibrate” image boundaries with respect to the precipitating electron boundaries. The harmonic fits suggest that the images can yield approximate precipitation boundaries for such purposes as estimating the area of the polar cap.

INDEX TERMS: 2407 Ionosphere: Auroral ionosphere (2704); 2455 Ionosphere: Particle precipitation; 2494 Ionosphere: Instruments and techniques; 2704 Magnetospheric Physics: Auroral phenomena (2407); KEYWORDS: auroral boundaries, electron precipitation

1. Introduction

[2] The poleward and equatorward boundaries of the aurora represent important geophysical limits having implications for the ionosphere, the magnetosphere, and their connections to the solar wind. Auroral boundaries can be defined using various methods including all-sky cameras [Feldstein, 1963; Feldstein and Galperin, 1985], magnetometers [Jimba and Potemra, 1978], satellite imagers [Lui et al., 1975], and precipitating particle detectors [Hardy et al., 1985]. Although occasionally subject to controversy, the precise delineation of aurora boundaries has largely become the province of the particle detectors, which, of course, can sample only a tiny portion of the aurora at one instant. Very high altitude auroral imagers on satellites, which have a global field of view, can offer a more expanded and altogether more salubrious picture of the oval, although their boundaries may be subject to contention.

[3] A number of authors have attempted delineation of auroral boundaries using satellite imagery. From crude images from the scanning photometer on the Isis-2 satellite, early investigators marked boundaries apparently by inspection of the intensities [Lui and Anger, 1973; Lui et al., 1975]. The same technique, applied to Defense Meteorological Satellite Program (DMSP) line scan photographs, provided the first mathematical representation of equatorward and poleward boundaries in terms of a harmonic expansion in magnetic local time (MLT) [Holzworth and Meng, 1975]. Thresholding of DE-2 image intensities provided the first quantitative definition of auroral boundaries, which were tracked during substorms [Craven and Frank, 1985, 1987]. A similar thresholding approach has been applied to Polar Ultraviolet Imager (UVI) images to show how polar cap area, as defined by the boundaries of the oval, can change during auroral substorms [Brittnacher et al., 1999].

[4] A natural extension of these efforts has been recent interest in actually correlating image and particle boundaries. Kauristie et al. [1999] deduced equatorward and poleward boundaries of the oval using the half widths of the peak intensity from latitude profiles of the Viking UVI images. Correlating a small number of image boundaries and DMSP particle boundaries, they discovered particle boundaries often lay >2° higher in latitude than the image boundaries, especially in the midnight and morning sectors. Baker et al. [2000] determined the poleward oval boundaries from Polar UVI images using both the threshold method and a ratio method (the ratio method uses the ratio of intensity to the local time maximum of intensity). The investigation concluded that the ratio method worked better and also identified a systematic difference of about 1° between the DMSP and UVI boundaries in the evening sector where most of the DMSP–UVI matches occurred.

[5] The systematic difference implied by the Kauristie and Baker investigations can be exploited to approximately calibrate the image boundaries using the particle boundaries. One can use this systematic difference to correct the image boundaries and determine the auroral boundaries. To overcome any possible statistical bias caused by a small data set, this investigation uses 2 years worth of DMSP–
UVI boundaries and over 23,000 matches to provide such a calibration.

2. Data Sets

[6] This investigation merges two data sets. The first data set derives from the auroral images obtained using the Lyman–Birge–Hopfield “long” (LBHL) filter of the UVI on the Polar satellite [Torr et al., 1995]. Auroral radiance in this wavelength band originates from N₂ emissions at altitudes of ~120 km and is considered to be proportional to energy flux of precipitating electrons [e.g., Meier et al., 1998]. The imager provides one image every 18 or 36 s with a resolution of ~30 km at the N₂ emission altitude. The Polar satellite has a highly elliptical orbit of 2 × 9 Re so that it views the north polar region for about 9 hours out of every 18-hour orbit. The Polar satellite suffers from an unfortunate “wobble” along one axis of its 200 × 228 pixel array so that the resolution in that dimension effectively exceeds ~100 km [Frank et al., 1998]. This wobble introduces a random uncertainty that contributes to the overall error budget of the boundary estimate.

[7] The second data set comes from the SSJ/4 electron detectors on the DMSP satellites [Hardy et al., 1984]. These electrostatic detectors respond to precipitating electrons and ions from 32 eV to 30 keV in logarithmic steps and obtain a complete differential energy spectrum in 1 s. The detectors have narrow apertures looking upward toward local zenith, ensuring that only particles in the atmospheric loss cone are observed. The DMSP satellites have Sun-synchronous orbits with altitudes of ~840 km and periods of ~100 min. Combining the satellite motion with the field of view and accumulation time of the detectors gives an effective spatial resolution of ~7 km. Newell et al. [1996a, and references therein] provide a detailed review of DMSP and the SSJ/4 detectors.

[8] The auroral boundaries must be determined in terms of precipitating particle fluxes. This investigation utilizes the work of Newell et al. [1991, 1996a, 1996b], who defined various auroral boundaries using precipitating particle data from the DMSP satellites. They define the poleward boundary of the auroral oval on the dayside as the open–closed boundary (recognized as the transition from the boundary plasma sheet region to any open region such as the cusp or polar cap) and on the nightside by the B6 electron precipitation boundary (the limit of the subcritical drizzle, where the polar rain appears or the particle fluxes drop below certain limits). The equatorward boundary of the Gaussian, while the dot-dash vertical line denotes the poleward boundary of the electron precipitation. A dayside poleward (DP) boundary was measured, and the DMSP–UVI difference was ~0.86°. See color version of this figure at back of this issue.

3. Fits to Latitude Profiles

[9] The calibration of the auroral oval involves several processing steps. First, DMSP boundaries are extracted from an extensive online database of precipitating particle boundaries [Sotirelis et al., 1998]. These boundaries are given in terms of MLT and magnetic latitude using the altitude-adjusted corrected geomagnetic coordinates (AAGCM) of Baker and Wing [1989]. Second, the DMSP boundaries are matched with UVI images obtained within ±3 min of the DMSP time marks. The intensities of these images are converted on a pixel-by-pixel basis to AAGCM coordinates at an emission altitude of 120 km. Third, latitude profiles of image intensities are constructed. Each profile is 1 hour (15°) wide in MLT, centered on the MLT of DMSP boundary measurement, and averaged into 1° bins of magnetic latitude. Figure 1 shows a typical UVI image and the corresponding latitude profile. Latitudes below 50° are not considered.

[10] Fourth, the binned latitude profiles are then fit to functions having the form of a Gaussian plus a quadratic background:

\[F(\lambda) = A_0 \exp \left(-\frac{1}{2} \left(\frac{\lambda - \lambda_1}{\lambda_2} \right)^2 \right) + A_3 + A_4 \lambda + A_5 \lambda^2 \]

where \(\lambda \) is the magnetic latitude in degrees, the \(A_i \) are coefficients of the fit, and \(F(\lambda) \) is the target intensity profile. Admittedly, not all profiles are well fit by (1), but previous authors have noted the similarity of auroral latitude profiles.

Figure 1. Sample UVI image (top panel) and corresponding latitude profile along the MLT of the DMSP location (bottom panel). The solid lines in the top show the MLT “slice” displayed in the bottom. The bottom histogram represents intensities averaged into a 1-hour MLT sector (centered at 14.5 hours) and 1° latitude bins. The smooth curve represents a fit to a Gaussian plus quadratic background. The solid vertical line denotes the “2FW” boundary of the Gaussian, while the dot-dash vertical line denotes the poleward boundary of the electron precipitation. A dayside poleward (DP) boundary was measured, and the DMSP–UVI difference was ~0.86°. See color version of this figure at back of this issue.
to Gaussian shapes [e.g., Eastes et al., 2000]. Most profiles are suggestive of such a form, and those which are not are removed by requiring that the fractional standard deviation of the fit be less than 0.20. The Gaussian part of (1) represents the auroral oval, and the quadratic background includes extraneous airglow, off-axis radiance, or unwanted nonoval aurora.

[11] The Gaussian peak immediately locates the center of the auroral oval at \(\lambda = A_1 \) and determines its full-width-at-half-maximum (FWHM) \(\Delta \lambda = 2.354 A_2 \). The fifth part of the processing involves the constraints for using the fit to determine auroral boundaries:

- \(A_0 > 5 \) photons/cm\(^2\)s (absolute intensity constraint)
- \(A_1 > 50^\circ \) (lower limit to oval location)
- \(\frac{A_B}{A_1} > 0.2 \) where \(B = A_3 + A_4 \cdot A_1 + A_5 \cdot A_1^2 \) is the background at the peak (Gaussian width must exceed bin resolution)
- \(\Delta \lambda > 1^\circ \) (Gaussian width must be less than 30% of the range of available bin latitudes reporting finite intensities)

A final criterion is that the fractional standard deviation of the fit must be less than 0.20, as mentioned previously. If these criteria are not satisfied, the UVI–DMSP match is rejected. If these criteria are satisfied, the match is accepted and the oval boundaries are determined by:

\[
\lambda_{EO} = A_1 - \Delta \lambda \\
\lambda_{PO} = A_1 + \Delta \lambda
\]

These boundaries correspond not to FWHM of the Gaussian, but to twice the FWHM. On a statistical basis, one finds that these “2FW” boundaries represent a near-optimum correlation with the DMSP boundaries. The lower panel of Figure 1 exhibits a sample Gaussian fit for a dayside profile and compares a poleward 2FW boundary with the dayside poleward boundary from precipitating particles.

4. Statistics of Boundary Differences

[12] Two years of DMSP–UVI data were examined. For 1997–1998, there were 11,833 equatorial matches and 11,244 poleward matches (23,077 total). The differences between the DMSP latitudes and the UVI latitudes were not negligible and, indeed, displayed systematic behavior, a finding reported for smaller data sets elsewhere [e.g., Kauristie et al., 1999; Baker et al., 2000]. For each boundary match, the difference between boundary latitudes was computed:

\[
\delta = \lambda_{DMSP} - \lambda_{UVI}
\]

These differences were placed into 1-hour MLT sectors (fine resolution) and 3-hour MLT sectors (coarse resolution). Within each MLT sector, one can compute a sample average difference \(\bar{\delta} \) and a sample standard deviation \(\sigma_\delta \).

[13] Within an MLT sector, the distributions of these differences can also be examined using histograms with 1° bin sizes. Figures 2 and 3 exhibit such histogram distributions for the equatorward and poleward boundaries for the combined years 1997–1998 at the coarse MLT resolution. Superposed on the histograms are Gaussian fits to the distributions of differences. These fits have the same form as (1) except \(A_3 = A_4 = A_5 = 0 \). (Do not confuse these difference fits with those for the latitude profiles!) The similarity of these distributions to Gaussians (centers \(\lambda_G \) and widths \(\sigma_G \)) suggests the uncertainties of DMSP and UVI differences are random.

[14] Similar histograms and Gaussians can be constructed for the individual years 1997 and 1998, or for individual seasons or months, for either MLT resolution. When such processing is done, only minor differences in the histograms and Gaussians appear; these differences are due to the statistical dilution of the numbers of boundary matches. The DMSP–UVI offsets remain essentially unchanged within the statistical uncertainties throughout the 2 years of this study.

[15] Tables 1 and 2 give the mean offsets \(\bar{\delta} \), their standard deviations \(\sigma_\delta \), and the number of samples \(N \) (i.e., DMSP–UVI boundary matches) in each MLT bin for the equatorward and poleward boundaries. The offsets are given for the coarse and fine MLT resolutions. The last line of
worth and Meng

commonly used to describe the auroral oval [e.g.,
the form of a low-order harmonic expansion such as that
are coefficients of the fit. Second-order fits (five coefficients)
MLT (hours)

Boundary Correlations for 3-Hour MLT Resolution

5. Fits to Boundary Differences

In the final step of the analysis, weighted fits were
performed to the sample mean differences d_r. This fit took
the form of a low-order harmonic expansion such as that
commonly used to describe the auroral oval [e.g., Holz-
worth and Meng, 1975]:

$$d_r = F(\varphi) = C_0 + C_1 \cos \varphi + D_1 \sin \varphi + C_2 \cos 2\varphi + D_2 \sin 2\varphi$$

where φ is the angle associated with the MLT and the C and D
are coefficients of the fit. Second-order fits (five coefficients)

Table 1. Boundary Correlations for 3-Hour MLT Resolution

Table 2. Boundary Correlations for 1-Hour MLT Resolution

were performed. Fits of this order allowed sufficiently
detailed characterization of the differences without introdu-
cing extraneous wiggles. The fits were weighted by the
numbers of matches in MLT sectors. (Weighting by the
standard deviations of the bin averages tended to produce
unphysical fits, especially for the equatorward boundaries.)

Figure 4 displays these fits for equatorward and
poleward boundaries for both the fine and coarse MLT
sectorizations. Systematic differences between DMSP boun-
daries and UVI boundaries are readily apparent. Again,
these systematic differences are similar for either year, any
season or month, and for at both MLT resolutions. Coef-
ficients for these fits appear in Table 3; use of these
coefficients in (4) will generate d_r in degrees. The σ_{FIT} in
the table represents the weighted standard deviations of the
harmonic fits, while N indicates the number of DMSP–
UVI matches used. Because of the DMSP orbits, no
boundary matches were found at MLTs from 2300 to
0500 hours. Also, a relatively small number of matches
were found for the equatorial boundaries from 1200 to
1500 hours; these received a low fitting weights and did
not attract the harmonic curves in the equatorial panels of
Figure 4.

To more readily illustrate the DMSP–UVI differ-
ences, the offsets of Figure 4 are shown on a more familiar
polar display in Figure 5. Hypothetical UVI boundaries are
displayed as dashed line circles at 60° (equatorward) and 70°
(poleward) magnetic latitude, while the DMSP boundaries
would appear as the diamond symbols and solid lines. The
standard deviations appear as radial segments plotted
across the diamonds.

6. Discussion

Figures 4 and 5 and Tables 1, 2, and 3 exhibit the
principal results of the DMSP–UVI boundary analysis. The
poleward differences have the same general shape for
each year, each season of the year, and each MLT resolution. The poleward boundary differences remain near C_0 from 0800 to 2200 hours, but then begin a systematic increase as MLTs decrease from 0700 hours. The poleward fits suggest particle boundaries differ significantly from the imager boundaries in the postmidnight sector, although no precipitating particle data are available to directly verify this.

The equatorward boundary differences are also essentially the same throughout the 1997–1998 time period but differ from the poleward boundary differences. The equatorward differences are near zero for MLTs after 1700 hours, but exhibit a systematic dip between 0600 and 1700 hours. The fits suggest the equatorward differences are near zero in the midnight and postmidnight sector. Peculiarly, between 1200 and 1400 hours, a significant departure from the curve fits exists for both 1997 and 1998. This difference occurs in a relatively small number of boundary matches, so it is not emphasized in the weighted fits. The departure may represent merely a statistical anomaly, peculiarly seen in both years. Alternately, the peak may be real, possibly a remnant of improperly recognized cusp signatures in the UVI boundary fits.

Unfortunately, this calibration involves some rather large uncertainties in the offsets. The standard deviations of $3/176$ often exceed the offsets themselves, suggesting that the corrections are unnecessary or even that no meaningful relation exists between the DMSP and UVI boundaries. Three important considerations mitigate against this interpretation. First, the offset distributions (Figures 2 and 3) are well represented by monomodal Gaussians, which implies the uncertainties are random and the mean is therefore a representative value of the distribution. Second, although the standard deviations are large, the uncertainties in the mean values are very small because of the large number of samples. That is, $\sigma_{\text{mean}} = \sigma_s/\sqrt{N} < 0.4^\circ$, because $\sigma_s \approx 4^\circ$ (or less) and $N > 100$ [e.g., Bevington, 1969]. Third, the arrangement of the mean offsets in MLT is not random but systematic. Indeed, the offsets are well represented as a harmonic function of MLT.

Table 3. Harmonic Coefficients for 1997–1998 Boundaries

<table>
<thead>
<tr>
<th></th>
<th>EQ (1 hour)</th>
<th>EQ (3 hours)</th>
<th>PO (1 hour)</th>
<th>PO (3 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0</td>
<td>-1.74</td>
<td>-2.19</td>
<td>0.80</td>
<td>0.89</td>
</tr>
<tr>
<td>C_1</td>
<td>2.44</td>
<td>1.11</td>
<td>1.11</td>
<td>1.09</td>
</tr>
<tr>
<td>D_1</td>
<td>-0.05</td>
<td>-0.45</td>
<td>1.48</td>
<td>1.43</td>
</tr>
<tr>
<td>C_2</td>
<td>-0.54</td>
<td>-0.89</td>
<td>-0.79</td>
<td>-0.65</td>
</tr>
<tr>
<td>D_2</td>
<td>0.30</td>
<td>-0.14</td>
<td>0.38</td>
<td>0.39</td>
</tr>
<tr>
<td>σ_{fit}</td>
<td>0.10</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>N</td>
<td>11,833</td>
<td>11,244</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Hypothetical UVI boundaries (dashed-line circles) compared to DMSP boundary (diamond symbols) found by using the Gaussian offsets and widths (see Figures 2 and 3). The solid lines indicate the adjusted boundary obtained from the harmonic fit to the offsets (4) and Table 1. The UVI equatorward boundary was assumed to be a circle at 60$^\circ$ magnetic latitude, while the poleward boundary was assumed to be a circle at 70$^\circ$.

7. Example: Determining Polar Cap Area

As an example of the use of the oval calibration, consider determining the polar cap area A from the boundaries in a UVI image. Given the UVI boundaries $\lambda_{\text{UVI}}(\phi)$...
Uncertainties in r have been ignored, and s increments of 1 hour ($=2.5$)

The harmonic expansion $F(\varphi)$ will use the polarward set of C and D coefficients from Table 1. Then the polar cap area is:

$$A = r^2 \int_{0}^{24h} \int_{0}^{90'} \cos \lambda d\lambda d\delta = r^2 \int_{0}^{24h} [1 - \sin \lambda_{DMSP}(\varphi)] d\varphi$$

$$\approx \frac{2 \pi r^2}{24} \sum_{i=1}^{24h} \left[1 - \sin \lambda_{DMSP}(\varphi) \right]$$

$$= \frac{2 \pi r^2}{24} \sum_{i=1}^{24h} \left[1 - \sin (\lambda_{UVI}(\varphi) + F(\varphi)) \right]$$

where r is the polar radius of the Earth at auroral altitudes (≈ 6476 km) and the summation runs over all local times in increments of 1 hour ($=2\pi/24$). (A spherical geometry is used.) The angles within the sum are $\varphi_i = (0.5, 1.5, 2.5, \ldots 23.5) \cdot (2\pi/24)$, which are converted from hours to radians for numerical calculations.

The formal uncertainty in A is:

$$\sigma_A = \sqrt{\left(\frac{\partial A}{\partial \lambda} \right)^2 \sigma_\lambda^2 + \left(\frac{\partial A}{\partial \delta} \right)^2 \sigma_\delta^2 + \left(\frac{\partial A}{\partial F} \right) \sigma_F^2}$$

$$\approx \frac{2 \pi r^2}{24} \sum_{i=1}^{24h} \cos (\lambda_{UVI}(\varphi) + F(\varphi)) \sqrt{\sigma_\lambda^2 + \sigma_F^2}$$

Uncertainties in r have been ignored, and λ and F are assumed to be uncorrelated, which makes $\sigma_{\lambda F}^2 = 0$. The uncertainty σ_λ in the UVI boundary is $\sim 3.5^\circ$ (from Tables 1 and 2) and the uncertainty $\sigma_{\lambda F}$ in F is $\sim 0.1^\circ$ (from Table 3).

Using (5) and (6), calculations of the polar cap area and its uncertainty were calculated assuming hypothetical circular boundaries (that is, $\lambda_{UVI}(\varphi) = \text{constant magnetic latitude}$). Figure 6 displays the resulting polar cap areas and their uncertainties as functions of the magnetic latitude of such circular boundaries. The uncertainty decreases with increasing latitude, although the fractional uncertainty σ_λ/A increases from 0.29 at 65° to 0.79 at 80°.

8. Conclusions

[26] A new method for finding auroral boundaries fits a Gaussian plus background to latitudinal intensity profiles taken from UVI–LBHL images. The goodness of this fit determines the reliability of the boundaries, which are then matched with precipitating electron boundaries obtained from DMSP satellites. The differences, or offsets, between DMSP and UVI boundaries are placed in MLT bins and examined on a statistical basis. Although the differences are generally near zero, systematic offsets of up to 4° appear between the DMSP and UVI boundaries. The offsets remain constant within statistical uncertainties of about $\pm 3.5^\circ$ for both years studied. The offset is greatest for the equatorward boundaries near local noon and for the poleward boundaries near 0400 hours. Fitting the offsets to a second-order harmonic expansion converts UVI boundaries to the precipitating particle boundaries, at least to within the statistical limits. This conversion can be used, for example, to calculate the polar cap area from satellite images.

[27] Acknowledgments. The authors wish to thank Fred Rich and the U.S. Air Force for providing DMSP particle data and George Parks and the UVI team for providing UVI image data. This research was supported by AFOSR grant F49620-00-1-0172.

References

Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences, chapters 2, 5, McGraw-Hill, New York, 1969.

J. F. Carbery, C.-I. Meng, P. T. Newell, and T. Sotirelis, Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA.(james.carbery@jhuapl.edu)
Figure 1. Sample UVI image (top panel) and corresponding latitude profile along the MLT of the DMSP location (bottom panel). The solid lines in the top show the MLT “slice” displayed in the bottom. The bottom histogram represents intensities averaged into a 1-hour MLT sector (centered at 14.5 hours) and 1° latitude bins. The smooth curve represents a fit to a Gaussian plus quadratic background. The solid vertical line denotes the “2FW” boundary of the Gaussian, while the dot-dash vertical line denotes the poleward boundary of the electron precipitation. A dayside poleward (DP) boundary was measured, and the DMSP–UVI difference was $-0.86°$.